PRACTICE SET FOR MIDTERM 1

Problem 1
Solve the following integrals

(1) /(x ~ 1)sinzda.

We use integration by parts. Since we want the polynomial to “disappear” we choose u =
x — 1 and dv = sin(x) dz. Therefore du = dz and v = — cos(x) and

/(x — 1)sinzdzr = —cos(z)(z — 1) — / —cos(x)dr = —cos(z)(x — 1) + /cos(:c) dz

= — cos(x) (q: — 1) + sin(a:) +C

sin® z
2 ——dz.
2) /1—|—0052x o

/ sin®(z) )dx:/sinz(x) sin(z) dx:/<1—COS2(x))SiH(CL’) &

1 + cos?( 1 + cos?(z) 1 + cos?(z)

Use the substitution v = cos(z), then du = —sin(x) dz and we get

(1 — (cos(z))?)sin(x) . / 1—w? / w—-1. / u? -1
/ 1 + (cos(z))? = 1+ u? du= 1+ u? du = 1+ u? du

u? +1 —2 1
= d ——du= [ 1du—-2 | ——d
/1+u2 u+/1+u2 “ / “ /1—|—u2 Y

= u — 2arctg(u) + C' = cos(x) — 2 arctg(cos(z)) + C

x.

) / sec (Inz) tan (In x) d

T

Use the substitution v = Inz, du = % dx to get

/ sec (Inz) tan (In z) de — /seC(U) tan(u) du = sec(u) + C' = sec(lnzx) 4+ C.

T

(4) / eV dr.

Use the substitution y = y/z. This is the same as y? = z which is easier to differentiate and
gives 2y dy = dx

/eﬁdx = /eydey: Q/yey dy.

Now we use integration by parts with u =y, dv = eYdy. So du = dy and v = ¥ and we
get

Q/yeydy:2(eyy—/eydy) :2(eyy—ey)+C:2<eﬁ\/§—eﬁ>+C



5 — 2w
—————dux.
() /x3—4x2+4x v

We are going to use partial fractions. First factor the denominator:
1? —d2® + dx = x(2® — 4o + 4) = 2(x — 2)°.

Since z is a non repeated linear factor, and x — 2 is a linear factor repeated twice, we are
going to look for a decomposition of the form

5—2x :é+ B N C
P —4x?+4r  x x—2 (x—2)%
Therefore
5—2x+02* = A(x — 2)* + Ba(z — 2) + Cx

5— 21+ 02® = A(2? — 4z +4) + B(z* — 22) + Cx

52z +02* = 4A + x(—4A — 2B + C) + 2*( )
and equating the coefficients

4A =5

—4A—-2B+C =-2

which means A =5/4, B=—-A=—-5/4and C = -2+4A+2B=-2+5-5/2=1/2. So

we can rewrite the original integral as

5— 2 5 11 5 1 1 1
_ 0T e =2 Zdp-2 dot- [ ——4a
/x3—4:1:2+4x . 4/x o 4/x—2 x+2/(x—2)2 o

5 5 1(z—2)"1
2

+C

(6) /a72 + 2z Q.

x3—1
We are going to use partial fractions. First factor the denominator as a difference of cubes
(see https://diegoricciotti.wordpress.com/algebra/factoring.pdf if you don’t re-
member how to factor)
1= (x—1)(a*+z+1).
Since  — 1 is a non repeated linear factor and z? + x 4+ 1 is a non repeated irreducible
quadratic factor, we look for a decomposition of the form

x? 4 2x A Bx +C

3 —1 x—1+x2+x+1'
Therefore
> +22+0=A@*+2+ 1)+ (Bx+C)(x—1)
22 4+204+0=A2>+ Axr + A+ B2 — Bz +Cz — C
2?4227 +0 = ( )22 +2(A—- B+ C)+ (A—C)

and equating the coefficients


https://diegoricciotti.wordpress.com/algebra/

which means A = C, B =1—A = 1—C and the second equation becomes C'—(1-C)+C =
2,which gives 3C' = 3. In conclusion we get C' =1, B =0 and A = 1, therefore the original
integral becomes

2+ 22 1 1
dz = d S
/x3—l o /x—l x+/x2+x+1 v

Now since 22+ x +1 is a quadratic irreducible, we need to complete the square and recognize
it as an arctangent. Note that

IS R . 2+3
¢+ =xr+tr+-+-=|r+ 2 -
4" 4 2 4

therefore

[otqo= [ [
R O T (IO a)

_4 ! .
3/<L(x%)>2+1d

ﬁ
-t (5 (-2) %

In conclusion the original integral is equal to

2+ 2x 1 1 4 2 1 V3
dz = d — dz=In(lz—=1D+-arctg | —= [z — =] | ==
/.r3—1 v /x—l ij/;EQ+:1:+1 v =n(lz |)+3arcg( 3(I 2)) 2

(8) /(tan5 z+ 1) sec’ v du.

2 2

Note that sec! z = sec? xsec? z = (1 + tan?(x)) sec? z and then use the substitutions

z = tan(z), dz = sec’(z)dx

/(tan5 z+1)sec’ rdr = /((tan 2)° 4+ 1)(1 4+ (tan(z))?)sec® z dz = /(25 +1)(1+ 2%) d=

28 28 23
Z/(Z5+Z7+1+Z2)dzzE+§+Z+§+C
tan®(x)  tand®(x tan®(x
= <>+ ()+tan(rp)+ <)+C’

6 8 3



9) /arcsin (2x) dx.
We use integration by parts with u = arcsin (2z), dv = dz so we have

- 1 _" 9 _
dU—Wde—\/mandv—x

arcsin (2x) dx = z arcsin (2z)
/ (22) / V1— 4.:52

Now use the substitution y = 1 — 42%, dy = —8xdz hence 2z dr = — dy/4. We focus on
the integral that’s left. We get

11 1 [, 1 1
e dy = —Z= —1/2 Qo = 24 1/2 — 21 — 42
/ 1—4x2 4\/§dy— 4/y dy = 1Y 24 C = 5 1 —422+4+C.

In conclusion the original integral becomes

1
/arcsm (2x) dx = z arcsin (27) dz = xarcsin (2z) + 5\/1 — 422 + C.

=

(10) / sin? x cos® z d.

The point is to use some trig formulas to get rid of the squares.
Method 1. Use the half-angle formulas
1 cos(2z)

) _ - _
sin”(x) 5 5

1 cos(2z)
2 — —
cos”(z) = st~

We get

. 1 cos(2x) 1 cos(2x) / 1 cos®(2z)
2 2
/sm x cos” xdx /(2 5 ) (2 5 dz 1 1 dz.

Now we use again the half angl formula to get

1 cos(4x)
2
2 _— —
cos”(2x) 5 + 5
hence
1 2(2 1 1 4 1 1 1 1

Method 2. Use the double angle formula
sin(2z) = 2sin(z) cos(z)
Divide by 2 and square both sides to get
sin?(2z)
4

= sin®(z) cos*(z).

We get

i 1 1 1 4
/Sin2x0082$d$:/81 :Z/s1n (2x) dx_4/<§_—cos; x)) dx
1 1
4




eCC
11 /— dx.
(I
Note that (e?*)" = 2¢**, so the substitution u = €2* would not be effective. Instead note
that e2* = ()2, hence we make the substitution u = €, so that du = ¢® dx

= arcsin(u) + C' = arcsin(e”) + C.

(12) / In (arctan z) .

14 22
Use the substitution y = arctan(z), dy = 5 dx

/ln(arctanac) dp — /1n(y) dy.

14 a2
Now we use integration by parts with v = In(y) and dv = dy. Then du = %}dy and v =y

/hl(y)dy:yln(y)—/iydy:yln(y)—/dy:yln(y)—y+0

= arctan(x) In(arctan(z)) — arctan(x) 4+ C.

(13) /eg sin x dz.

Here we have to integrate by parts twice. We choose u = sin(r) and dv = e2. Then
du = cos(z) and = = 2e>. We get

/ez sin(z) dz = 2¢3 sin(z) — /26% cos(z) dz.

Now integrate by parts again, choosing u = cos(z) and dv = 2e>. Then du = — sin(x) dz
and v = 4e2. We get

/eg sin(x) dz = 22 sin(z) — (463 cos(z) — /46:28(— sin(x)) d:v)

= 2¢2 sin(z) — 4e? cos(z) — 4/ e2 sin(z) dz.
Denoting the red integral by I, the previous relation can be written as the equation
I = 2¢2 sin(x) — 4e? cos(x) — 41
I +41 = 2e? sin(z) — 4de?
51 = 2e2 sin(z) — 4e2 cos(x)
]. x x
I= R (2e2 sin(z) — 4e? cos(z)) .

Therefore )
/eg sin(x) dxg (2¢2 sin(z) — 4e? cos(z)) + C.



(14) / V1 — 422 dx.

We use a trigonometric substitution. A trigonometric identity involving the difference of
squares is for example

1 — sin®(t) = cos*(t).
Therefore, after noting 422 = (2x)* we need to set 2z = sin(t). We get 2dz = cos(t)dt

hence dx = § cos(t) dt

/mdr— /m—m cos( /0052(t)dt:%/(%+cosft)) dt

1. 1sin(2t)
R (e it il .
2(2 T2 )+C

Now to convert to the original variable z we look at the substituion we made 2x = sin(t).
Therefore t = arcsin(2z). In order to substitute sm 2t) we use the double angle formula

sin(2t) = 2sin(t) cos(t). We have cos(t) = y/1 — sin®(t) = v/1 — 422 so we conclude
1/1 1 sin(2¢ 1/1 1
= (—t + _sm_()> +C = 5 (5 arcsin(2zx) + 5 arcsin(2x)v1 — 491:2) +C.

2\2 2 2

Alternatively you can set up a right triangle and do it geometrically.

(15) /x2e3’“"3 dz.

We use the substitution © = —322, du = —922 dz hence 2> dz = _% du
/.’1726_3363 dx = ~9 /e“ du = —56“ +C = —56_3:03 +C

(16) /(:173 —1)Inzdz.

Here we use integration by parts. Since we don’t know an immediate antiderivative of In(z)
we choose u = In(z) and dv = (2* — 1) dz. This way du = 1dz and v = ——

/(x?’—l)lnxdx:(?—x)ln(m)—/(x{—x)idx 4
:(%4— )m@)-/(?q) do
:(%—x)ln(x)—(f—ﬁ—x) dz +C



(17) /xarctan(l + z)dx.

We could directly use an integration by parts, but it will be simpler to simplify the argument
of the arctangent first. So we use the substituion y =1+ z, dy = dx.

/x arctan (1 + z) dz = /(y — 1) arctg(y) dy.

Now we use integration by parts. Since we don’t know an immediate antiderivative of
2
arctg(y) we choose u = arctg(y) and dv = (y — 1) dy. We get du = 1+ —Sdyandv=% —y

- vacigwan = (%) avestn) - [ (% =) 1

We now focus on the last integral

2 2
Yy 1 1 Yy y
7 dy = = dy — d
/(2 y>1+y2y2/1+y2y/1+y2y
1 [y? Y
S AR E—— d
2/ T+ V7 /1+ 2%
1 /y2+1
2 14 y? 1+ 7 d
1
=3 (y — arctg(y)) —In(1+y )2

where we solved the last integral noting that the numerator is the derivative of the denom-
inator except for a factor of 2 (you can check it using the substitution ¢ = 1 + 3?). Now
going back to the original variable we get

2

v Y L
/xarctan(l +x)de = (5 - y) arctg(y) _/ (E - y) 1+ 2 d

= (y_2 - y) arctg(y)% (y — arctg(y)) + In(1 + yz)% O

2

= ((1+—‘”)2 — (1 + x)) arctg(1l + x)

5 (14 z — arctg(l + x))

N —

1
+In(1+ (1 + x)2)§ + C.



o 1
18 —duz.
(18) /1 w2t —1"

This is clearly an improper integral since one of the bounds of integration is infinity. The
function 22? + x — 1 is equal to zero when z = 71i4v 148 _ ’f?’, so forx = —1orz=1/2.
Our interval of integration doesn’t contain either of them, so our function is continuous on
[1,00[ and the only problem is at co. By definition we have

> 1 M 1

/ 5 dr= lim ——dux.

1 22247 —1 M—oo J; 222 +x — 1
First we are going to compute the indefinite integral. We use a partial fractions decompo-
sition. Since the denomiator factors as 222 + 2z — 1 =2(x + 1)(z — 1/2) = (z + 1)(2x — 1)
which are linear factors appearing only once, we look for a decomposition of the form

1 1 A B

22 tr—1 @+D@e—1) z+1 20-1

hence
1=AQ2x—1)+ Bz +1).

Choose = —1 to get 1 = A(—3) which means A = —3. Then choose © = 1/2 to get
1 = B3/2 which means B = 2/3. Therefore we have

1 1 1 9 1
- dp=—= [ qe+=Z d
/Zﬁ+x—1x 3 x+1x+3/éx—1x

1 2 1

_ % (= In(|z + 1)) + In(|22 — 1]))

1 |22 — 1|
=—In
3 |z + 1]
where we used properties of logarithms in the last step to simplify the result. We are doing
this because we are going to compute the limit now.

/OO ! d li N ! d
———dzr = lim ——dx
1 22241 -—1 M=o J; 222 +x —1

1 (2M—1]\ 1
= g 3 n (m) —3n(l)

. 11 2M —1
= I1m —=In

is positive for M large, and In(1) = 0. Now note that
2M -1
li =2
Mooe M+ 1

o1 oM -1\ 1
JW&ﬁm(M+1)_§m@

whichis a finite value, therefore the integral is convergent.

2M—1

since M1

hence




& 1
19 dzx.
(19) /0 5+ 22 v

The denominator 5+ 2?2 is never equal to zero, so the integrand is continuous on the interval
[0, 00[. The integral is improper only at infinity. By definition we have

/ L dr = lim dr = lim - / > dx
0 0

5+ 22 M—oo [ + x2 M—00

1 M 1
= lim —arctg <—\/5) Sg

Mﬁ\oof)

therefore the integral is convergent.

(20) / e "ve * 4 3dx.
0

The integral is improper only at infinity. By definition we have

[e'e) M
/ e Ve *+3dzr = lim e Ve + 3dz.
0

M—o0 0

Let’s look at the indefinite integral first. We can make the substitution © = e™ + 3 so that
du = —e " dz and we get
2 2
/e‘x\/ea’ +3dx = —/\/ﬂdu = —u3/2§ +C=—(e"+ 3)3/2§ + C.

Therefore, going back to the improper integral we get
M

" 2 2
lim e “Ve 4+ 3dr = lim —(e™ + 3)3/2§ + (1 + 3)3/2§

M—oo [ M—oo [
2 2
=—(0+ 3>3/2§ +(1+ 3)3/2§

since the exponential approaches 0 as the exponent approaches NEGATIVE INFINITY.
Therefore the integral is convergent.



]
(21) / L
o xzln"zx

The integrand is not defined at x = 0, therefore the integral is improper at 0. By definition

we have
1

1
2
/—2dx—lim 5— dz.
o rln“z t—0t J; xln“x

Let’s look at the indefinite integral first. We can use the substitution u = In(z) so that
du = %dx and we get

1 1 1
dz= | Sdu=—-u"'+C=- C.
/:I;ln2a: ! /u2 B v In(x) *

Going back to the improper integral we have

SR LIS S L] 1
1m — = lim — = —

ot ), wllz U esor In(1/2) | In() | In(1/2)

because lim; g+ In(t) = —oo so lim; o+ ﬁ = 0. Therefore the integral is convergent.




